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The asymptotic stability of the equilibrium of a system with two degrees of freedom in the critical case of two pairs of pure imaginary 
eiganvalues at 1:3 resonance is investigated. Algebraic criteria of the asymptotic stability of the complete system are constructed 
from the model equations of the third appro~fimation under the condition that the region of investigations is bounded by a certain 
submanifold of positive measure of parameter space (the region in which the derivative of the Lyaptmov function is sign-definite). 
© 1996 Elsevier Scievtce Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider the problem of the stability of an autonomous system of the following form 

X = X(x) ,  X ( 0 )  = 0, x E R 4 (1.1) 

Here  X(x) is a smooth vector field, where the matrix (OX/0x)0 has pure imaginary eigenvalues satisfying 
the condition ~.1 :-- 3L2. The complex normal form of the equations of the third approximation has the 
following form [1] 

Zl = hlZl "4" RI2ZlZ2Z 2 -I- RIIZ?Z 2 + RI ~3 

z2 = k2z2 + R21ztzzzl + R22Z2Z2 + Rzz t z  2 (1.2) 

Z 1 ----'X t q ' i x  2, 7. 2 " X  3"I' iX 4 

R k = a k + ib k, Rkm = akin + ibtm 

In polar coordinates ~, 0j, related to the variables zj, ~'j by the formulae 

Zj = .~ 'exp( iOj) ,  zj = ~ j  exp(-i0j) 

Eqs (1.2) have the form 

= 2alibi 2 + 2al2rlr 2 + 2 r~lr~ ~ (a I cos0 + b I sin0) 

i'2 = 2a21 rl r2 + 2a22 r2 + 2 r l ~ ( a 2  cos 0 + b 2 sin 0) (1.3) 

= (bll + 3b21 )rl + (hi2 + 3b22 )r2 + ~ (bl cos 0 - a I sin 0) + 3 r~lr~ (b 2 cos 0 -  a 2 sin 0) 

Here i) > 0 are the polar radii, 0 = 01 + 302 is the resonance angle, and aij, bij, aj, bj are arbitrary 
real coefficients. 

This problem was solved in [2] for the special case of a Hamiltonian system: the necessary and sufficient 
conditions for stability were obtained from the truncated equations of the third approximation. For 
system (1.1), which satisfies the condition of reversibility, criteria of stability of the model system were 
obtained in [3], and it was shown that its instability leads to instability of Eqs (1.1). 

It follows from an analysis of Eqs (1.1) in general form that the problem of constructing stability 
criteria for fourth-order resonance is quite complex. In fact, unlike the integrated model equations of 
the Hamiltonian and reversible cases (which admit of a complete investigation of the stability using 
the first integrals and the solutions that are asymptotic to zero), Eqs (1.2) are non-integrable, which 
complicates their analysis. As a consequence, constructing stability criteria using m-functions is a non- 
trivial problem, which is unsolvable in the class of simplest forms - quadratic with respect to the variables 
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zj, z'j:t using these forms it is only possible to construct separate necessary or sufficient conditions of 
stability. The complexity of the investigations is also due to the transcendental nature of the problem: 
in a 12-dimensional parameter space of system (1.2) the surface which separates the classes of 
asymptotically stable and unstable systems is transcendental [4]. 

These difficulties were overcome for the first time in [5, 6]: algebraic criteria of the stability of model 
system (1.2) on a non-degenerate submanifold of parameter space were obtained. Hence, the trans- 
cendental nature of the problem is not entirely total: the surface of separation contains algebraic portions. 

The purpose of the present paper is to construct new simpler criteria of stability which remain true 
over the whole system (1.1). 

2. METHOD OF I N V E S T I G A T I O N  

We know that, to investigate problems of stability, the classical method of constructing u-functions 
from the first integrals of ordinary differential equations is the most effective. It was shown in [7] that 
this method is of universal importance for problems of the stability of Hamiltonian systems: the a~- 
functions which satisfy the first Lyapunov theorem on stability are (by virtue of LiouviUe's theorem on 
the conservative of phase volume) integrals of the equations being investigated. To construct sign-definite 
integrals, Chetayev's method of integral relations is usually employed. We also know that, for many 
non-conservative problems, the u-functions of the direct method belong to the space of the first integrals 
of a certain auxiliary system [8]. In this case, the "energy approach" is usually employed when the energy 
integral of the comparison system is regarded as the Lyapunov function. 

We will give a brief description of the heuristic approach [9, 10], which generalizes the method of 
constructing u-functions of the first integrals. 

We will consider an auxiliary model system of the following form 

~=~l~H=2 rl~r~sin0, ~:2=~H =6 r l ~ s i n  0 

(2.1) 
~H ~ H  ~ c o s 8 + 9  r ~ l r  5cos0  I~ = - O r l -  J~-r2 = 3/rl-r 2- 

where H = -2~/(rlr23) cos 0. Equations (2.1) correspond to the case of a Hamiltonian system; they have 
been investigated in detail in [2]• 

Equations (2.1) are integrable: the function W + c3, where 

W = c ~r53 cos0+ c2(3r 1 - r2) 2, cj = const (2•2) 

is the complete integral of the corresponding linearly homogeneous first-order equation 

2 r~lr~ sin0~rZl +,: /----Y . ,, Oz u3/rlr ~ sin U~r2 + ( ~  cos0 + 9 r~lr2 cos0)-~0 = 0 (2.3) 

Here H(rl, r2, 0), (3rl - r2) = const are independent first integrals of the comparison system. 
Consider the functional continuation V(rl, r2, 0, a) + oh (ct = (txl, . . .  , %) is the vector of arbitrary 

parameters) of the integral relation (W + c3) [9]: (V + oh) is a smooth family of functions, of which 
the family (W+ c3) is aspecial case, i e  W = Vlp2 ,wherep  (2) = (~01(Cl, C2) , ,95(Cl, C2)) is aregular • . . .  . () . . .  
parametnzed two-surface m the space of arbitrary parameters al  . . . . .  0is. 

The expression 

V = (Y.lrl 2 + 2o~2r, r 2 + ct3r22 + 23rffr~ ~ (or 4 cos 0 + ot 5 sin 0) (2.4) 

obviously satisfies this definition (o~ = const). 
We can associate with the function (V + oh) the functional space T[V], constructed as follows [9]. 

Suppose r¢ is an arbitrary regular/-surface in the space of the parameters al, • • •,  oh (0 ~< 1 ~< 2); 
(V + oh)n is the limit of the family (V + oh) on this surface, Dn is the envelope of the/-parametric family 
(V + oh)n (if I = 0 we assume Dn = (V + oh)n), and T:[V] is the set of such envelopes when the subscript 

covers the whole family of regular/-surfaces of the space 0tl . . . .  , oh. Then, by definition, we have 

tKHAZLIN L. G. and SHNOL' E. E. Investigation of the asymptotic stability of equilibrium for 1:3 resonance. Preprint No. 
67, Institute of Applied Mathematics, Academy of Sciences of the U.S.S.R., 1978. 
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T[V] = T o [V] u T I [V] u T 2 [VI 

It turns out that the space T[V] is a natural generalization of the whole set of solutions of Eq. (2.3). 
In fact, according to Lagrange's classical investigations [11] and also those carried out by Imshenetskii 
[12] (see also [10]), any solution of Eq. (2.3) is an envelope (at least locally) of a certain/-parametric 
family (W + c3)t (dim n = l, 0 ~ l ~< 2). This indicates that the space of solutions of Eq. (2.3) consists 
of envelopes of all possible families (W + ca)u, when the subscript ~ covers the whole set of regular l- 
surfaces (0 ~< l ~< 2), belonging to the space of parameters Cl, c2, c3. Using the previous symbols, the 
set of solutions of Eq. (2.3) will be denoted by T[W]. Obviously T[W] C T[V], where TI[W] C TI[V] [9]. 
The space IIV] will be called the functional continuation of the set of solutions of Eq. (2.3). 

This construction admits of obvious generalizations to the multidimensional case: the number of 
subspaces Tj (] = 0 , . . . ,  n - 1) is equal to n, where n is the dimension of the system. 

According to the heuristic principle, which generalizes the classical method of constructing a)-functions 
from the first integrals of the comparison system [9], the functions of the direct method belong to the 
space T[V]. Using this approach some algebraic criteria of asymptotic stability of system (1.3) were 
obtained in [5, 6] using Lyapunov functions belonging to the subspaces T0[V], TI[V]. The results of these 
investigations were used to study the stability of the steady rotations of a visco-elastic satellite.i- 

We will construct new criteria of stability using the concept of extensions. However, unlike the previous 
results, we will search for auxiliary functions in space T2[V] consisting of the envelopes of all possible 
two parametric families (V +%)~ (dim ~ = 2). 

It should be noted that the representation of Lyapunov functions in the form of envelopes of certain 
families of functic~ns is typical for stability problems. Indeed, according to Chetayev's method, Lyapunov 
functions must be, sought in the form of the integral relation 

k k 
x ) = ~  ~iF/(x)+~'. ~iF/2(x), x ~ R  n, k < n - 1  

i=l i=l 

Here ~ and ~tj are constants which are chosen from the requirement for x) to be sign-definite, n is 
the dimension of the system being investigated, and Fy(x) are independent first integrals. Suppose 

n l  2 (W + Cn), W = ~i-1 c.,Fi(x) is the corresponding complete integral It is obvious that if Ejlx. ~ 0, then 
~) does not belong to the subspace T0[W], the elements of which are functions of the n-parametric family 

- -  n - 1  1 (W + cn). Hence, ~ belongs to the subset Ujffi 1 Tj [W] of the space of first integrals. But this means 
that ~) is the enve, lope (at least locally) of a certain family (~r + cn)n, where n is a regular/-surface 
(l ~> 1) in the space of the important constants of the integral (W + cn). We also arrive at this conclusion 
in the case when 't) is represented in the form of an arbitrary non-linear function of known integrals. 

Thus, we will consider a two-dimensional surface ~ belonging to the space of arbitrary constants 
al . . . . .  o~ of the function V 

O~j = ~/jlVl -I- ~/j2V 2 (j = 1 ..... 5) 

a 6 = (v 2 + v 2) / 2 

Here Pl, P2 are local coordinates of the surface and ~y are parameters. We will consider the limitation 
on (V + Or6) on tlltis surface 

(V-I- ~ 6 )  ~ = VlV I -I- v 2 V  2 -1- (v i  2 +v2)/2 

where 

V k = ~/ikrl 2 + 2~/2~rlr 2 + ~3krl 2 + 2 r l ~ ( ~ / 4  k cos  0 + ~/Sk sin O) 

The equations of the envelopes Dn of the family (V + ~)n  have the form 

3(V+a6)~/Ov ~=0, 3(V+a6)~/Ov2=O 

D x = ( V  "t" ot6)Tt (Vl,  v 2 ) 

t M A R K E Y E V  A. E and KRASIENIKOV P. S. The stability of the resonance rotations of a visco-elastic satellite. Preprint 
No. 479, Institute of F~oblems in Mechanics, Academy of Sciences of the U.S.S.R., Moscow, 1990. 
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Hence it is clear that 

v j = - V  l, v 2 = - V  2, D n = - ( V ~ + V  2 ) / 2  

It follows from the definition of functional extensions that Dn ~ T2[V]. Consider the function V' = 
Dn. We will have 

1 2 
V '  = - - -  E ['~lkFl 2 + 23'2krlr2 +~3k r2 + 2  r l ~ ( ~ / 4 k  COS0+~/Sk sin0)] 2 

2k=l  

We will calculate the derivative of V' along the vector field of Eqs (1.3) 

V' = rE 5 [~:0 + r ll COS 0 + r t 2 sin 0 + K21 COS 2 O + 2K22 COS O sin 0 + 1(23 sin 2 O] 

K 0 = Go k5 +GI k4 +G2 k3 +G3 k2 +G4k+G 5 

~:lj = "~tk-(Bojk3 + Blj k2 + B2jk + B3j (J = 1,2) 

l¢,2i=k(Dlik+D2i) (i = 1,2,3) 

Here k = rx/r2 is a variable parameter, and the coefficients Gj, Bij, D# depend quadratically on Yij and 
linearly on the parameters of the problem, Thus, for example 

2 
G O = - 4 a l l  ~ '  (~/lk) 2 

k=l 
2 

G 1 = --4 ]~ [2~/lk'YE/call + "YIk (~/Ikal2 + "YEka21 + ~/2kall )] 
k=l 

(the expressions for the remaining coefficients are omitted). We will choose the constants ~/# so that 
the coefficients of cos 0 and sin 0 vanish, while the coefficients of cos 2 0 and sin 2 0 become equal to 
one another, i.e. to make the numbers ~j subject to the conditions ~:11 = ~:a2 = 0, ~:21 = r23. We obtain 
an algebraic system consisting of 10 non-linear equations 

2 5 
Y. E R~m)~ljk~lik =0 ( m = l  ..... 10) (2.5) 
k=l i,j=l 

The coefficients Ri~ m) are linear functions of the parameters aij, bij, ay, bj. The number of unknown 
quantities 7jk is 10. 

We will show that system (2.5) has non-trivial solutions for 7/k- We first note that methods of investigat- 
ing algebraic systems (see [13, 14]) are not very suitable here since system (2.5) is of high dimension. 
We will therefore convert Eqs (2.5) to a form, when the existence of a non-trivial family of solutions 
follows from the theory of implicit functions. 

Equations (2.5) depend linearly on the parameters of the problem, and hence they can be written 
in the form 

D A = 0  

A = (all,a12,a21,a22,al ,bl,a2,b2,bll + 3b21 ,b12 + 3b22) x 

(2.6) 

where D is a 10 x 10 matrix, the elements of which d# are quadratic functions of Tu,. 
The conditions for a non-trivial solution A of the linear system (2.6) to exist have the form rank 

D < 1 0 .  
Suppose rank D = 9. Then the matrix D has a 9 x 9 basis minor. This obviously imposes additional 

limitations on the unknown quantities ~k 

A = 0 (2.7) 

(A is the determinant of the matrix D). If 
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det(dij )~.k= t * 0 

system (2.6) is solvable for a n , .  • •, (bn + 3621), ((b12 + 3622) is the free parameter) 

23 

(2.8) 

all = (b12 + 3b22 )fl (djk) 

(bll + 3b21 ) = (b12 + 3b22 )f9(djk ) 

(2.9) 

Here f l , . . . ,  f9 is the fundamental solution of  Eqs (2.6). Thus, in the region of (2.7) and (2.8) (which 
does not contain 1trivial values of Tjk = 0) Eqs (2.5) reduce to the form (2.9). A feature of this repre- 
sentation is the i~tversion of  the formulation of the problem: the quantities 7jk are chosen arbitrarily 
and the parameters of system (1.3) are found from (2.9). 

Calculations show that in the general situation 

rank O(fl ..... fg, A) = lO 

Hence it follows that the mapping 

(flzx=O):R 9 -4  [~9, f = ( f l  ..... f9) 

is non-degenerate, and hence Eqs (2.9) have a non-trivial family of solutions y~, parametrized by the 
quantities a#, b O, ai, bi and which also satisfy the additional conditions (2.7) and (2.8). This indicates 
that system (2.5) has the same solutions for ~k, at least in the non-degenerate range of variation of 
the parameters aii, b#, ai, b i. 

3. C R I T E R I A  F O R  A S Y M P T O T I C  S T A B I L I T Y  

Suppose ~ (j = 1, . . . , 5; k = 1, 2) is a non-trivial solution of Eqs (2.5) which depends on the 
parameters of system (1.3). Consider the Lyapunov function V*, where V* is the limit o f ¥ '  on this family. 
The derivative of  V* has the form 

V* : r25[[ ~* +~:22 sin20] 

1~*= Gok5 * 4 * 3 - *  2 +Glk +G2k" +G3k +G~k+G; 

G; = G; * O~l, CJ4 = G*4 + D~t 

We will assume that G~ ¢ 0, G~ ~ 0. The function V* is sign-definite in the cone 

r l >0, r 2 >0, O < O < 2 n  

if and only if (13") z > (1£~2) 2 for any k > 0 (this inequality also remains true when k = 0, k = oo, since 
in the planes rl = 0 and rE = 0 the function V* is non-zero). Hence it follows that the condition for 
there to be no positive roots of the equation 

([3")2 _ 0c22 )2 = 0 (3.1) 

is necessary and sufficient for V* to be sign-definite in this cone. 

Theorem. Suppose all  ~: 0, G~ 4: 0, G]  ¢ 0 and that the real algebraic equation (3.1) has no positive 
roots. The equilibrium position of the complete system (1.1) is asymptotically stable if ala < 0 and 
unstable if all  > O. 

Proof. It follows from the conditions of the theorem that the function V* is sign-definite in the region 
rl t> 0, rE t> 0, 0 ~< 0 ~< 2n (terms of higher order of smallness, omitted when deriving the model equations 
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(1.3) have no effect on the sign of V* since the function V* and the right-hand sides of Eqs (1.3) are 
homogeneous polynomials in zj, zi). Obviously sign V* = sign G~ = -sign an. We will consider the 
case when au < 0. Since the function V* is always negative definite, we have V'V* < 0, and hence V* 
satisfies all the conditions of Lyapunov's theorem on asymptotic stability. 

Suppose all  > 0. This means that the signs of the functions V* and V* are identical in the neighbour- 
hood of rl = rE = 0. Hence the position of equilibrium is unstable by virtue of Lyapunov's theorem on 
instability. This proves the theorem. 

One-to-three resonance in the multidimensional case n > 2 has already been investigated in [15]. 
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